“Why nanotubes grow chiral” earns a spot in C&EN Nanotube hiStory

cq5dam.web.260.10000

JUNE 8, 2015 ISSUE, VOL. 93 | ISS. 23 Twists And Shouts: A Nanotube Story Nanotechnology’s chiral superstars were overshadowed by hype, but researchers believe they still have potential

The June 8 issue of the American Chemical Society‘s C&EN magazine quotes Boris Yakobson in its Cover Story “Twists And Shouts: A Nanotube Story“.

The timeline of major events in the history of carbon nanotubes features the Artyukhov–Penev–Yakobson (APY) theory of nanotube chirality in the most recent “Nanotubes Today” chapter. The APY theory combines the nanotube/catalyst interface thermodynamics with the kinetic growth theory to show that the unusual near-armchair peaks, repeatedly revealed in catalytic growth experiments over the last decade, emerge from the two antagonistic trends at the interface: energetic preference towards achiral versus the faster growth kinetics of chiral nanotubes. This narrow distribution is inherently related to the peaked behaviour of a simple function, xe−x.

1.
Artyukhov, V. I., Penev, E. S. & Yakobson, B. I. Why nanotubes grow chiral. Nat Commun 5, (2014).

The ultimate diamond slab…

among the most cited articles in Diamond and Related Materials published since 2010
fig6-diam_reatl_mater_2010
The ultimate diamond slab: GraphAne versus graphEne” is one of the early works from the group presenting a comprehensive characterization of three carbon nanomaterials of technological interest: graphEne, graphAne, and fluorinated graphene. By means of first principles and tight-binding calculations in combination with analytical methods, we carried out detailed comparative studies of their structural, mechanical, thermal, and electronic properties. The calculated elastic properties of these materials confirmed their high mechanical stability and stiffness, which in association with their low dimensionality, translates into a large ballistic thermal conductance. Furthermore, we showed that while graphene is a zero-gap semi-metal, graphane and fluorinated graphene are wide gap semiconductors. Here we also discussed designed interfaces between these systems, and showed that their physical properties have potential applications in nanoelectronic devices.