The latest fashion: Graphene edges can be tailor-made

Rice University theory shows it should be possible to tune material’s properties

Graphene nanoribbons can be enticed to form favorable "reconstructed" edges by pulling them apart with the right force and at the right temperature, according to researchers at Rice University. The illustration shows the crack at the edge that begins the formation of five- and seven-atom pair under the right conditions. Illustration by ZiAng Zhang

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get the edges they need for applications.

New research by Rice physicist Boris Yakobson and his colleagues shows it should be possible to control the edge properties of graphene nanoribbons by controlling the conditions under which the nanoribbons are pulled apart.

In the work, which appeared this month in the Royal Society of Chemistry journal Nanoscale, the Rice team used sophisticated computer modeling to show it’s possible to rip nanoribbons and get graphene with either pristine zigzag edges or what are called reconstructed zigzags.

– See more at: Rice News

Print Friendly, PDF & Email

Comments are closed.