Study validates method for guided discovery of 3D flat-band materials
Rice University scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.
The find is detailed in a study published in Nature Physics. The paper also describes the theoretical design principle and experimental methodology that guided the research team to the material. One part copper, two parts vanadium and four parts sulfur, the alloy features a 3D pyrochlore lattice consisting of corner-sharing tetrahedra.
Yakobson Research Group performed first-principle calculations that quantified the flat-band effects produced by geometric frustration.
Quantum materials are a likely place to look, especially if they host strong electron interactions that give rise to quantum entanglement. Entanglement leads to strange electronic behaviors, including frustrating the movement of electrons to the point where they become locked in place.
– See more at Rice News
Related
- Nature Physics: A quantum collaboration for flat bands