Editor’s Highlights for Carbon selects our work on fibers

A recent work from the group on atomistic modeling of carbon fibers appears in the quarterly Editor’s Highlights for Carbon. These articles are handpicked by the Editors for the reader community and are made freely available for a limited time.

Carbon fiber structure is excessively complex and modeling attempts necessarily rely on various approximations. We have designed structural faults with atomistic details, pertaining to polyacrylonitrile (PAN) derived fibers, and probed them using large-scale molecular dynamics simulations to uncover trends and gain insight into the effect of local structure on the strength of the basic structural units (BSUs) and the role of interfaces between regions with different degrees of graphitization. Besides capturing the expected strength degrading with increasing misalignment, the designed basic structural units reveal atomistic details of local structural failure upon tensile loading.

The image shows an atomistic representation of a BSU (~ 40,000 atoms); for clarity part of the geometry is not rendered. A misoriented block  is highlighted. Load is applied along the fiber axis, as indicated by the thick arrow, by displacing thin slabs (“handles”) at the top and bottom of the system, schematically represented as plates.

Sinuous grain boundaries in graphene demystified

The January 21 issue of Adv. Funct. Mater. features on its back cover work on graphene grain boundaries

The image shows a simulated grain boundary stitching two graphene domains tilted at a 28° angle exhibits a well-defined sinuous shape, which is revealed to be energetically preferred. Such sinuous grain boundary, appeared to be a curved river on land, are highlighted by B. I. Yakobson and co-workers on page 367 as a new channel to explore novel electronic behavior in graphene and to reach the as yet unexplored flatlands of two-dimensional materials.

Sparking Industrial Breakthroughs

2015 CASC Brochure features work from the group

Images illustrating two works from the group are featured in the 2015 Brochure published by the Coalition for Academic Scientific Computation – an alliance of 79 of America’s most forward thinking research universities, national labs and computing centers, including Rice’s Ken Kennedy Institute for Information Technology.  On page 2, the  highlight box “Something new under the sun” shows a collage based on a recent Nanoscale paper, and our extensive sampling of the CNT end-caps energy landscape, published in ACS Nano, is featured in the top box on page 3.