2D Boron among the Angew. Chem. covers


Two-dimensional boron would take different forms, depending on the substrate used in chemical vapor deposition growth. Image by Zhuzha Zhang

Our most recent work on 2D boron will be featured on a cover of the upcoming issue of Angewandte Chemie International Edition. The study builds on two of our previous works on two-dimensional boron [1, 2]  and provides further clues as to how this elusive material can be synthesized and what the product may look like.

Calculation of the atom-by-atom energies involved in creating a sheet of boron revealed that the metal substrate – the surface upon which two-dimensional materials are grown in a chemical vapor deposition (CVD) furnace – would make all the difference.

The new calculations show it may be possible to guide the formation of 2D boron by tailoring boron-metal interactions.Theoretical physicist Boris Yakobson and his Rice colleagues discovered that copper, a common substrate in graphene growth, might be best to obtain flat boron, while other metals would guide the resulting material in their unique ways.

Y. Liu, E. S. Penev, B. I. Yakobson, Probing the Synthesis of Two-Dimensional Boron by First-Principles Computations. Angew. Chem. Int. Ed. 52, 3156–3159 (2013).
E. S. Penev, S. Bhowmick, A. Sadrzadeh, B. I. Yakobson, Polymorphism of Two-Dimensional Boron. Nano Lett. 12, 2441–2445 (2012).

– See more at: Rice News

Flat boron by the numbers

Rice University researchers calculate what it would take to make new two-dimensional material

It would be a terrible thing if laboratories striving to grow graphene from carbon atoms kept winding up with big pesky diamonds.

“That would be trouble, cleaning out the diamonds so you could do some real work,” said Rice University theoretical physicist Boris Yakobson, chuckling at the absurd image.

Yet something like that keeps happening to experimentalists working to grow two-dimensional boron. Boron atoms have a strong preference to clump into three-dimensional shapes rather than assemble into pristine single-atom sheets, like carbon does when it becomes graphene. And boron clumps aren’t nearly as sparkly…more

Flat boron may take many forms

When is nothing really something? When it leads to a revelation about boron, an element with worlds of unexplored potential.

Theoretical physicist Boris Yakobson and his team at Rice University have taken an unusual approach to analyzing the possible configurations of two-dimensional sheets of boron, as reported this week in the American Chemical Society journal Nano Letters. more…