“Why nanotubes grow chiral” earns a spot in C&EN Nanotube hiStory

cq5dam.web.260.10000

JUNE 8, 2015 ISSUE, VOL. 93 | ISS. 23 Twists And Shouts: A Nanotube Story Nanotechnology’s chiral superstars were overshadowed by hype, but researchers believe they still have potential

The June 8 issue of the American Chemical Society‘s C&EN magazine quotes Boris Yakobson in its Cover Story “Twists And Shouts: A Nanotube Story“.

The timeline of major events in the history of carbon nanotubes features the Artyukhov–Penev–Yakobson (APY) theory of nanotube chirality [1] in the most recent “Nanotubes Today” chapter. The APY theory combines the nanotube/catalyst interface thermodynamics with the kinetic growth theory to show that the unusual near-armchair peaks, repeatedly revealed in catalytic growth experiments over the last decade, emerge from the two antagonistic trends at the interface: energetic preference towards achiral versus the faster growth kinetics of chiral nanotubes. This narrow distribution is inherently related to the peaked behaviour of a simple function, xe−x.

1.
V. I. Artyukhov, E. S. Penev, B. I. Yakobson, Why nanotubes grow chiral. Nat Commun. 5 (2014), doi:10.1038/ncomms5892.

Why do nanotubes grow chiral?

Rice University theorists determine factors that give tubes their chiral angles

Many a great idea springs from talks over a cup of coffee. But it’s rare and wonderful when a revelation comes from the cup itself.

Rice University theoretical physicist Boris Yakobson, acting upon sudden inspiration at a meeting last year in Arlington, Va., obtained a couple of spare coffee cups from a server and a pair of scissors and proceeded to lay out – science fair-style – an idea that could have far-reaching implications for the nanotechnology industry.

As reflected in a new paper in Nature Communications, Yakobson and his Rice colleagues, postdoctoral researcher Vasilii Artyukhov and research scientist Evgeni Penev, had come up with the seed (or perhaps, bean) of a simple formula that describes why nanotubes have chirality. Chirality is the property that describes the angle of the carbon atom hexagons that make up a nanotube’s walls.

– See more at: Rice News

Caps not the culprit in nanotube chirality

Rice study narrows the possibilities for gaining control of nanotube type

A single-walled carbon nanotube grows from the round cap down, so it’s logical to think the cap’s formation determines what follows. But according to researchers at Rice University, that’s not entirely so.

Theoretical physicist Boris Yakobson and his Rice colleagues found through exhaustive analysis that those who wish to control the chirality of nanotubes – the characteristic that determines their electrical properties – would be wise to look at other aspects of their growth.

In the study by Yakobson, research scientist Evgeni Penev and postdoctoral researcher Vasilli Artyukhov that was published recently by the American Chemical Society journal ACS Nano, the Rice researchers found that the elastic energy landscapes involved in cap formation are not strong enough to dictate the nanotube’s chirality….more

Advanced Materials is Owl about Rice

High-impact journal publishes centennial edition with broad overview of materials science at Rice

Materials scientists who received Volume 24, Issue 36 of the respected journal Advanced Materials recently may have noticed it contained Rice University research and nothing else.

That is no mistake. The journal published a special issue this fall focused on Rice, the home of a large number of materials researchers that has been recognized by a Times Higher Education survey as the best in the world.  more…

Rice professor’s nanotube theory confirmed

Air Force Research Laboratory experiment shows chirality of tube controls speed of growth

The Air Force Research Laboratory in Dayton, Ohio, has experimentally confirmed a theory by Rice University Professor Boris Yakobson that foretold a pair of interesting properties about nanotube growth: That the chirality of a nanotube controls the speed of its growth, and that armchair nanotubes should grow the fastest. more…