Rice lab peers inside 2D crystal synthesis

Simulations could help molecular engineers enhance creation of semiconducting nanomaterials

Scientific studies describing the most basic processes often have the greatest impact in the long run. A new work by Rice University engineers could be one such, and it’s a gas, gas, gas for nanomaterials.

Rice materials theorist Boris Yakobson, graduate student Jincheng Lei and alumnus Yu Xie of Rice’s Brown School of Engineering have unveiled how a popular 2D material, molybdenum disulfide (MoS2), flashes into existence during chemical vapor deposition (CVD).

Knowing how the process works will give scientists and engineers a way to optimize the bulk manufacture of MoS2 and other valuable materials classed as transition metal dichalcogenides (TMDs), semiconducting crystals that are good bets to find a home in next-generation electronics.

Their study in the American Chemical Society journal ACS Nano focuses on MoS2‘s “pre-history”, specifically what happens in a CVD furnace once all the solid ingredients are in place. CVD, often associated with graphene and carbon nanotubes, has been exploited to make a variety of 2D materials by providing solid precursors and catalysts that sublimate into gas and react. The chemistry dictates which molecules fall out of the gas and settle on a substrate, like copper or silicone, and assemble into a 2D crystal.

– See more at Rice News

Borophene on silver grows freely into an atomic ‘skin’

Rice scientists lead effort to improve manufacture of valuable 2D material

Borophene has a nearly perfect partner in a form of silver that could help the trendy two-dimensional material grow to unheard-of lengths.

A well-ordered lattice of silver atoms makes it possible to speed the growth of pristine borophene, the atom-thick allotrope of boron that so far can only form via synthesis by molecular-beam epitaxy (MBE).

By using a silver substrate and through careful manipulation of temperature and deposition rate, scientists have discovered they can grow elongated hexagon-shaped flakes of borophene. They suggested the use of a proper metal substrate could facilitate the growth of ultrathin, narrow borophene ribbons.

New work published in Science Advances by researchers at Rice and Northwestern universities, Nanjing University of Aeronautics and Astronautics and Argonne National Laboratory will help streamline the manufacture of the conductive material, which shows potential for use in wearable and transparent electronics, plasmonic sensors and energy storage.

– See more at Rice News

Oddball edge wins nanotube faceoff

Rice theory shows peculiar ‘Janus’ interface a common mechanism in carbon nanotube growth

When is a circle less stable than a jagged loop? Apparently when you’re talking about carbon nanotubes.

Rice University theoretical researchers have discovered that nanotubes with segregated sections of “zigzag” and “armchair” facets growing from a solid catalyst are far more energetically stable than a circular arrangement would be.

Under the right circumstances, they reported, the interface between a growing nanotube and its catalyst can reach its lowest-known energy state via the two-faced “Janus” configuration, with a half-circle of zigzags opposite six armchairs.

The terms refer to the shape of the nanotube’s edge: A zigzag nanotube’s end looks like a saw tooth, while an armchair is like a row of seats with armrests. They are the basic edge configurations of the two-dimensional honeycomb of carbon atoms known as graphene (as well as other 2D materials) and determine many of the materials’ properties, especially electrical conductivity.

The Brown School of Engineering team of materials theorist Boris Yakobson, researcher and lead author Ksenia Bets and assistant research professor Evgeni Penev reported their results in the American Chemical Society journal ACS Nano.

– See more at Rice News

Gold soaks up boron, spits out borophene

Rice, Argonne, Northwestern scientists show unique mechanism makes valuable 2D material

In the heat of a furnace, boron atoms happily dive into a bath of gold. And when things get cool, they resurface as coveted borophene.

The discovery by scientists from Rice University, Argonne National Laboratory and Northwestern University is a step toward practical applications like wearable or transparent electronics, plasmonic sensors or energy storage for the two-dimensional material with excellent conductivity.

Teams led by Boris Yakobson at Rice, Nathan Guisinger at Argonne and Mark Hersam at Northwestern both formed the theory for and then demonstrated their novel method to grow borophene – the atom-thick form of boron – on a gold surface.

They found that with sufficient heat in a high vacuum, boron atoms streamed into the furnace sink into the gold itself. Upon cooling, the boron atoms reappear and form islands of borophene on the surface.

This is distinct from most other 2D materials made by feeding gases into a furnace. In standard chemical vapor deposition, the atoms settle onto a substrate and connect with each other. They typically don’t disappear into the substrate.

The discovery was described in a paper in the American Chemical Society journal ACS Nano.

– See more at Rice News

In borophene, boundaries are no barrier

Rice, Northwestern researchers make and test atom-thick boron’s unique domainsA scanning electron microscope image (top) shows two periodic assemblies of borophene, a synthetic, two-dimensional array of boron atoms, that join at a line defect. Computational models in the middle and bottom images correspond to the regions, with 1-to-6 borophene in red and 1-to-5 in blue. Researchers at Rice and Northwestern universities determined that phases of borophene line up in such a way that the material's conductive, metallic nature is maintained. (Credit: Graphics by Luqing Wang/Rice University)

The research led by Rice materials theorist Boris Yakobson and Northwestern materials scientist Mark Hersam appears in Nature Materials.

Borophene differs from graphene and other 2D materials in an important way: It doesn’t appear in nature. When graphene was discovered, it was famously yanked from a piece of graphite with Scotch tape. But semiconducting bulk boron doesn’t have layers, so all borophene is synthetic. Also unlike graphene, in which atoms connect to form chicken wire-like hexagons, borophene forms as linked triangles. Periodically, atoms go missing from the grid and leave hexagonal vacancies. The labs investigated forms of borophene with “hollow hexagon” concentrations of one per every five triangles and one per every six in the lattice.

Yakobson and Hersam also co-authored a recent Nature Nanotechnology perspective about “the lightest 2D metal.”In that piece, the authors suggested borophene may be ideal for flexible and transparent electronic interconnects, electrodes and displays. It could also be suitable for superconducting quantum interference devices and, when stacked, for hydrogen storage and battery applications.

– See more at Rice News

Salt boosts creation of 2D materials

Rice scientists show how salt lowers reaction temperatures to make novel materials

A dash of salt can simplify the creation of two-dimensional materials, and thanks to Rice University scientists, the reason is becoming clear.

Boris Yakobson, a Rice professor of materials science and nanoengineering and of chemistry, was the go-to expert when a group of labs in Singapore, China, Japan and Taiwan used salt to make a “library” of 2D materials that combined transition metals and chalcogens. These compounds could lead to smaller and faster transistors, photovoltaics, sensors and catalysts, according to the researchers.

Through first-principles molecular dynamics simulations and accurate energy computations, Yakobson and his colleagues determined that salt reduces the temperature at which some elements interact in a chemical vapor deposition (CVD) furnace. That makes it easier to form atom-thick layers similar to graphene but with the potential to customize their chemical composition for specific layer-material and accordingly electrical, optical, catalytic and other useful properties.

The research team including Yakobson and Rice postdoctoral researcher Yu Xie and graduate student Jincheng Lei reported its results this week in Nature.

The clip shows a molecular dynamics simulation of a layer of salt and molybdenum oxide mixing together to form molybdenum oxychloride. The atoms are oxygen (red), sodium (yellow), chlorine (green), and molybdenum (purple).

– See more at Rice News

Polyphony in B flat

At last, experiments offer two-dimensional boron… on a silver platterb_cards

In an extensive “News & Views” in Nature Chemistry, we provide a critical view of the latest breakthrough in materials flatland: the synthesis of two-dimensional boron. It also reflects on a decade-long effort in Yakobson’s group towards understanding and eventually predicting the structure of low-dimensional boron: from the B80 fullerene, to the polymorphism of 2D boron, to practical routes for its synthesis.

2D Boron among the Angew. Chem. covers

angew_chem_cover

Two-dimensional boron would take different forms, depending on the substrate used in chemical vapor deposition growth. Image by Zhuzha Zhang

Our most recent work on 2D boron will be featured on a cover of the upcoming issue of Angewandte Chemie International Edition. The study builds on two of our previous works on two-dimensional boron  and provides further clues as to how this elusive material can be synthesized and what the product may look like.

Calculation of the atom-by-atom energies involved in creating a sheet of boron revealed that the metal substrate – the surface upon which two-dimensional materials are grown in a chemical vapor deposition (CVD) furnace – would make all the difference.

The new calculations show it may be possible to guide the formation of 2D boron by tailoring boron-metal interactions.Theoretical physicist Boris Yakobson and his Rice colleagues discovered that copper, a common substrate in graphene growth, might be best to obtain flat boron, while other metals would guide the resulting material in their unique ways.

1.
Penev, E. S., Bhowmick, S., Sadrzadeh, A. & Yakobson, B. I. Polymorphism of Two-Dimensional Boron. Nano Lett. 12, 2441–2445 (2012).
1.
Liu, Y., Penev, E. S. & Yakobson, B. I. Probing the Synthesis of Two-Dimensional Boron by First-Principles Computations. Angew. Chem. Int. Ed. 52, 3156–3159 (2013).

– See more at: Rice News