Flat boron may take many forms

When is nothing really something? When it leads to a revelation about boron, an element with worlds of unexplored potential.

Theoretical physicist Boris Yakobson and his team at Rice University have taken an unusual approach to analyzing the possible configurations of two-dimensional sheets of boron, as reported this week in the American Chemical Society journal Nano Letters. more…

Rice professor’s nanotube theory confirmed

Air Force Research Laboratory experiment shows chirality of tube controls speed of growth

The Air Force Research Laboratory in Dayton, Ohio, has experimentally confirmed a theory by Rice University Professor Boris Yakobson that foretold a pair of interesting properties about nanotube growth: That the chirality of a nanotube controls the speed of its growth, and that armchair nanotubes should grow the fastest. more…

Graphene rips follow rules

A press release from Rice University Office of Public Affairs / News & Media Relations covers recent work by our group published in Nano Letters:

Rice University simulations show carbon sheets tear along energetically favorable lines

HOUSTON — (Jan. 5, 2012) — Research from Rice University and the University of California at Berkeley may give science and industry a new way to manipulate graphene, the wonder material expected to play a role in advanced electronic, mechanical and thermal applications.

Continue reading

Rice physicists dig theoretical wells to mine quantum dots

Graphane is the material of choice for physicists on the cutting edge of materials science, and Rice University researchers are right there with the pack – and perhaps a little ahead.

Researchers mentored by Boris Yakobson, a Rice professor of mechanical engineering and materials science and of chemistry, have discovered the strategic extraction of hydrogen atoms from a two-dimensional sheet of graphane naturally opens up spaces of pure graphene that look – and act – like quantum dots.